Neighborhood total domination of a graph and its complement

نویسندگان

  • Doost Ali Mojdeh
  • M. R. Sayed Salehi
  • Mustapha Chellali
چکیده

A neighborhood total dominating set in a graph G is a dominating set S of G with the property that the subgraph induced by N(S), the open neighborhood of the set S, has no isolated vertex. The neighborhood total domination number γnt(G) is the minimum cardinality of a neighborhood total dominating set of G. Arumugam and Sivagnanam introduced and studied the concept of neighborhood total domination in graphs [S. Arumugam and C. Sivagnanam, Opuscula Math. 31 (2011) 519–531]. They proved that if G and G are connected, then γnt(G) + γnt(G) ≤ { d 2 e+ 2 if diam(G) ≥ 3. d 2 e+ 3 if diam(G) = 2. , where G is the complement of G. The problem of characterizing graphs attaining equality in the previous bounds was left as an open problem by the authors. In this paper, we address this open problem by studying sharpness and strictness of the above inequalities. ∗ Also at Department of Mathematics, University of Tafresh, Tafresh, Iran. D.A. MOJDEH ET AL. /AUSTRALAS. J. COMBIN. 65 (1) (2016), 37–44 38

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties and domination number of the complement of a new graph associated to a commutative ring

In this paper some properties of the complement of  a new graph  associated with a commutative ring  are investigated ....

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016